

ELIZADE UNIVERSITY, ILARA-MOKIN, ONDO STATE, NIGERIA

DEPARTMENT OF MECHANICAL ENGINEERING

FIRST SEMESTER EXAMINATIONS 2019/2020 ACADEMIC SESSION GNE 415 – Engineering Analysis (3 Units) 400 Level General Engineering

COURSE:

CLASS:

TIME ALLOWED: 3 Hours

INSTRUCTIONS: Attempt question ONE and any other FOUR

Attempt question (125 marks)

Date: February, 2020

Question 1 (25 marks)

A tool is drawn at random from a toolbox containing 6 spanners, 4 hammers, and 5 wrenches. Determine the probability that it is:

Spanner.

ii. . Hammer.

iii. Wrench.

Not spanner. Spanner or hammer.

...5 marks

Solve the partial differential equation:

$$\frac{\partial^2 U}{\partial x^2} + \frac{\partial^2 U}{\partial y^2} = x^2 - y^2$$

...20 marks

Question 2 (25 marks)

Provide brief answers to the following questions:

What is a Sample in relation to population?

Write the Laplace Transform of f''(t) and f'''(t).

...5 marks

Given that a function is defined as

Given that a function is defined as
$$f(t) = \begin{cases} 0 & \cdots & t < -\frac{a}{2} \\ 1 & \cdots & -\frac{a}{2} < t < \frac{a}{2} \\ 0 & \cdots & \frac{a}{2} < t \end{cases}$$
 Show that the Fourier Transform of $f(t)$ is given as
$$F(\omega) = \frac{a}{\sqrt{2\pi}} \operatorname{sinc}\left(\frac{\omega a}{2}\right)$$

$$F(\omega) = \frac{a}{\sqrt{2\pi}} \operatorname{sinc}\left(\frac{\omega a}{2}\right)$$

where,

$$\operatorname{sinc}\left(\frac{\omega a}{2}\right) = \frac{\sin\left(\frac{\omega a}{2}\right)}{\left(\frac{\omega a}{2}\right)}$$

...20 marks

Question 3 (25 marks)
a) Briefly answer the following:

What is a variable? ii. What is a population?

...5 marks

Find the Laplace Transform of $f(t) = 8t^8 + 6\cos 8t + 3e^{-t}$10 marks

Determine:

 $\int \cos \alpha z \sin \alpha z \, dz$

ii. $\int \cot(\eta z + \lambda) dz$

...10 marks

Question 4 (25 marks)
a) Write short notes on correlation and regression.

...5 marks

$$\beta(z,\bar{z}) = M(x,y) + iN(x,y)$$

Show from first principles that:

$$2\frac{\partial\beta}{\partial\bar{z}} = \left(\frac{\partial M}{\partial x} - \frac{\partial N}{\partial y}\right) + i\left(\frac{\partial M}{\partial y} + \frac{\partial N}{\partial x}\right)$$

...20 marks

Page 1 of 2

Question 5 (25 marks)
a) What are harmonic functions?

...5 marks

Show that $u = e^{-x}(x \sin y - y \cos y)$ is harmonic.

...10 marks

c) Prove the Cauchy's theorem.

...10 marks

Question 6 (25 marks)
a) Write the Cauchy-Riemann equations for the function:

$$f(z) = u(x,y) + iv(x,y)$$

...5 marks

Given that $A(x, y) = 2xy - ix^2y^3$. Find:

 ∇A

ii. $|\nabla \times A|$

iii. $\nabla \cdot A$ iv. $\nabla^2 A$

...20 marks

Question 7 (25 marks)
a) Briefly answer the following questions:
i. Define data.

What is the goal of statistics?

...5 marks

Data collected in an experiment is given in Table (7.1). X and Y are independent and dependent variables respectively.

Table 7.1: Experimental data

S/N	X	Y
1	1	3
2	2	1
2	1	Λ

Answer the following equations:

- Derive a linear regression model using the given data.
- Plot a graph showing the given data and the linear regression model derived in question 7(b)(i).

...20 marks